Series : ONS/2	

	SET – 1
कोड नं	56/2/1/E
Code No.	56/2/1/F

•				
रोल न				
Roll No.				

परीक्षार्थी कोड को उत्तर-पुस्तिका के मुख-पृष्ठ पर अवश्य लिखें ।

Candidates must write the Code on the title page of the answer-book.

- कृपया जाँच कर लें कि इस प्रश्न-पत्र में मुद्रित पृष्ठ 11 हैं।
- प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए कोड नम्बर को छात्र उत्तर-पुस्तिका के मुख-पृष्ठ पर लिखें ।
- कृपया जाँच कर लें कि इस प्रश्न-पत्र में **26** प्रश्न हैं ।
- कृपया प्रश्न का उत्तर लिखना शुरू करने से पहले, प्रश्न का क्रमांक अवश्य लिखें।
- इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का समय दिया गया है । प्रश्न-पत्र का वितरण पूर्वाहन में 10.15 बजे किया जायेगा । 10.15 बजे से 10.30 बजे तक छात्र केवल प्रश्न-पत्र पढ़ेंगे और इस अवधि के दौरान वे उत्तर-पुस्तिका पर कोई उत्तर नहीं लिखेंगे ।
- Please check that this question paper contains 11 printed pages.
- Code number given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.
- Please check that this question paper contains 26 questions.
- Please write down the Serial Number of the question before attempting it.
- 15 minute time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the students will only read the question paper and will not write any answer on the answer-book during this period.

रसायन विज्ञान (सैद्धान्तिक)

CHEMISTRY (Theory)

निर्धारित समय : 3 घण्टे अधिकतम अंक : 70 Time allowed : 3 hours Maximum Marks : 70

सामान्य निर्देश :

- (i) **सभी** प्रश्न अनिवार्य हैं।
- (ii) प्रश्न-संख्या 1 से 5 तक अति लघु-उत्तरीय प्रश्न हैं । प्रत्येक प्रश्न के लिए 1 अंक है ।
- (iii) प्रश्न-संख्या 6 से 10 तक लघ्-उत्तरीय प्रश्न हैं । प्रत्येक प्रश्न के लिए 2 अंक हैं ।
- (iv) प्रश्न-संख्या 11 से 22 तक भी लघु-उत्तरीय प्रश्न हैं । प्रत्येक प्रश्न के लिए 3 अंक हैं ।
- (v) प्रश्न-संख्या 23 मुल्याधारित प्रश्न है और इसके लिए 4 अंक हैं।

56/2/1/F 1 [P.T.O.

- (vi) प्रश्न-संख्या 24 से 26 तक दीर्घ-उत्तरीय प्रश्न हैं । प्रत्येक प्रश्न के लिए 5 अंक हैं ।
- (vii) यदि आवश्यकता हो, तो लॉग टेबलों का प्रयोग करें । कैलकुलेटरों के उपयोग की अनुमित **नहीं** है । **General Instructions :**
 - (i) All questions are compulsory.
 - (ii) Questions Number 1 to 5 are very short answer questions and carry 1 mark each.
 - (iii) Questions Number 6 to 10 are short answer questions and carry 2 marks each.
 - (iv) Questions number 11 to 22 are also short answer questions and carry 3 marks each.
 - (v) Question number 23 is a value based question and carry 4 marks.
 - (vi) Question Number 24 to 26 are long answer questions and carry 5 marks each.
 - (vii) Use log tables, if necessary. Use of calculators is not allowed.
- कोलॉइडी सॉल की स्थिरता का मुख्य कारण लिखिए ।
 Write the main reason for the stability of colloidal sols.
- 2. प्राचीन स्मारकों के शीशे धुँधले हो जाते हैं । क्यों ? Glass from ancient monuments appears milky. Why ?
- 3. निम्न में से कौन अभिक्रिया $S_N 1$ वाली है ?

Which of the following reactions is $S_N 1$ type?

(i)
$$C_2H_5$$
 C_2H_5 C_2H_5 C_2H_5 C_2H_5 C_2H_5 C_2H_5 C_2H_5

(ii)
$$X \xrightarrow{C_2H_5} Y \xrightarrow{C_2H_5} X \xrightarrow{C_1H_5} X \xrightarrow{C_1H_5}$$

4. सांद्र HNO_3 के साथ कॉपर खरादन को गर्म करने पर भूरे रंग की गैस निकलती है जो ठंडा होने पर द्विआणिवक हो जाती है । गैस की पहचान कीजिए ।

On heating Cu turnings with conc. HNO₃, a brown coloured gas is evolved which on cooling dimerises. Identify the gas.

5. दिये गये यौगिक का आई.यू.पी.ए.सी. नाम लिखिए ।

$$\mathsf{CH}_3 - \mathsf{CH}_2 - \mathsf{CH}_2 - \mathsf{C} - \mathsf{N} \\ \mathsf{CH}_3 \\ \mathsf{CH}_3$$

Write the IUPAC name of the given compound.

$$CH_3 - CH_2 - CH_2 - C - N$$
 CH_3
 CH_3

- 6. जब एक उपसहसंयोजन यौगिक $CoCl_3 \cdot 4NH_3$ को $AgNO_3$ से मिलाया जाता है, तो यौगिक के एक मोल के प्रति AgCl का 1 मोल अवक्षेपित होता है । लिखिए :
 - (i) कॉम्प्लेक्स का संरचना सूत्र
 - (ii) कॉम्प्लेक्स का आई.यू.पी.ए.सी. नाम

When a co-ordination compound $CoCl_3 \cdot 4NH_3$ is mixed with $AgNO_3$, 1 mole of AgCl is precipitated per mole of the compound. Write

- (i) Structural formula of the complex
- (ii) IUPAC name of the complex
- 7. यह दर्शाइए कि एक प्रथम कोटि की अभिक्रिया के 99.9% पूर्ण होने में जो समय लगता है वह अभिक्रिया की अर्ध आयु $(t_{1/2})$ का दस गुना होता है ।

अथवा

प्रथम कोटि अभिक्रिया के दर स्थिरांक के लिये समाकलित दर समीकरण व्युत्पन्न कीजिए ।

Show that in a first order reaction, time required for completion of 99.9% is 10 times that of half-life $(t_{1/2})$ of the reaction.

OR

Derive integrated rate equation for rate constant for a first order reaction.

56/2/1/F 3 [P.T.O.

8. हेनरी नियम का कथन कीजिए । इसका एक अनुप्रयोग लिखिए । द्रवों में गैसों की घुलनशीलता पर तापमान का क्या प्रभाव पड़ता है ?

State Henry's law. Write its one application. What is the effect of temperature on solubility of gases in liquid ?

9. आणिवक सूत्र C_4H_8O वाला एक आर्गेनिक यौगिक 'X' 2, 4-DNP अभिकारक के साथ नारंगी-लाल रंग का अवक्षेप देता है । यह टालेन अभिकारक को अपचियत नहीं करता लेकिन NaOI के साथ गर्म करने पर आयोडोफार्म का पीला अवक्षेप देता है । यौगिक X, $\text{LiA}lH_4$ के साथ अपचयन पर यौगिक 'Y' देता है जो सांद्र H_2SO_4 के साथ निर्जलीकरण करने पर ब्यूट-2-ईन बनाता है । यौगिक X और Y की पहचान कीजिए ।

An organic compound 'X' having molecular formula C_4H_8O gives orange-red ppt. with 2, 4-DNP reagent. It does not reduce Tollens' reagent but gives yellow ppt. of iodoform on heating with NaOI. Compound X on reduction with $LiAlH_4$ gives compound 'Y' which undergoes dehydration reaction on heating with conc. H_2SO_4 to form But-2-ene. Identify the compounds X and Y.

- 10. निम्न की संरचनाएँ लिखिए :
 - (i) H_2SO_3
 - (ii) XeF₄

Write the structures of the following:

- (i) H_2SO_3
- (ii) XeF₄
- 11. प्रथम कोटि की ऊष्मीय विघटन अभिक्रिया के लिये निम्न आँकड़े प्राप्त किये गए :

$$C_2H_5Cl(g) \longrightarrow C_2H_4(g) + HCl(g)$$

समय/sec कुल दाब / atm $0 \quad 0.30$
 $300 \quad 0.50$

दर स्थिरांक परिकलित कीजिए ।

(दिया गया : $\log 2 = 0.301$, $\log 3 = 0.4771$, $\log 4 = 0.6021$)

For the first order thermal decomposition reaction, following data were obtained:

$$C_2H_5Cl(g) \longrightarrow C_2H_4(g) + HCl(g)$$

Time/sec	Total pressure / atm
0	0.30
300	0.50

Calculate the rate constant.

(Given: $\log 2 = 0.301$, $\log 3 = 0.4771$, $\log 4 = 0.6021$)

12. कारण दीजिए:

- (i) ऐल्डिहाइडों और कीटोनों के lpha-हाइड्रोजन परमाणु स्वभाव में अम्लीय होते हैं ।
- (ii) HCN के संगुणन के प्रति एथेनॉल की अपेक्षा प्रोपैनोन कम क्रियाशील है ।
- (iii) बेन्ज़ोइक अम्ल फ्रीडेल-क्राफ्ट्स अभिक्रिया नहीं देता है ।

अथवा

आप कैसे रूपांतरित करेंगे ?

- (i) टॉलुईन को बेन्जैल्डिहाइड में
- (ii) एथैनोइक अम्ल को 2-क्लोरोएथैनोइक अम्ल में
- (iii) ऐसीटोन को प्रोपेन में

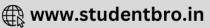
Give reasons:

- (i) The α -hydrogen atoms of aldehydes and ketones are acidic in nature.
- (ii) Propanone is less reactive than ethanol toward addition of HCN.
- (iii) Benzoic acid does not give Friedal-Crafts reaction.

OR

How can you convert ?

- (i) Toluene to Benzaldehyde
- (ii) Ethanoic acid to 2-chloroethanoic acid
- (iii) Acetone to Propane
- 13. एक तत्त्व f.c.c. जालक में 400 pm कोष्टिका कोर के साथ क्रिस्टिलित होता है । यदि इस तत्त्व के 200 g में 2.5×10^{24} परमाणु हों, तो इसका घनत्व परिकिलत कीजिए ।


An element crystallizes in a f.c.c. lattice with cell edge of 400 pm. Calculate the density if 200 g of this element contain 2.5×10^{24} atoms.

- 14. निम्न पदों को परिभाषित कीजिए :
 - (i) शोषण (शार्पशन)
 - (ii) जीटा विभव
 - (iii) क्रैफ्ट तापमान

Define the following terms:

- (i) Sorption
- (ii) Zeta potential
- (iii) Kraft temperature

56/2/1/F 5 [P.T.O.

15. यदि 50 g जल में $Na_2SO_4(M=142~g~mol^{-1})$ का 2~g~ugmn हो, तो विलयन का हिमांक परिकलित कीजिए । यह मानकर चिलए कि Na_2SO_4 पूर्णतः आयिनत है ।

$$(K_f \text{ जल = 1.86 K kg mol}^{-1})$$

Calculate the freezing point of solution when 2 g of $Na_2SO_4(M = 142 \text{ g mol}^{-1})$ was dissolved in 50 g of water, assuming Na_2SO_4 undergoes complete ionization.

 $(K_f \text{ for water} = 1.86 \text{ K kg mol}^{-1})$

16. कारण बतलाइए:

- (i) PCl_3 की अपेक्षा PCl_5 अधिक सहसंयोजक है ।
- (ii) S-S आबन्ध की वियोजन एन्थेल्पी की अपेक्षा O-O की वियोजन एन्थेल्पी कमतर है ।
- (iii) Cl_2 की अपेक्षा F_2 प्रबलतर उपचायक है ।

Give reasons:

- (i) PCl_5 is more covalent than PCl_3 .
- (ii) O-O bond has lower bond dissociation enthalpy than S-S bond.
- (iii) F_2 is a stronger oxidizing agent than Cl_2 .
- 17. निम्न अभिक्रियाओं को पूर्ण कीजिए :

(i)
$$C_6H_5-COO^-NH_4^+ \xrightarrow{\Delta} A \xrightarrow{Br_2/KOH} B \xrightarrow{CH_3COCl/$$
पिरिडीन $C_6H_5-COO^-NH_4^+ \xrightarrow{\Delta} A \xrightarrow{Br_2/KOH} C$

$$\text{(ii)} \quad \text{C_6H}_5\text{N_2^{\dagger}BF}_4^- \frac{\text{NaNO}_2/\text{Cu}}{\Delta} \rightarrow \text{A} \quad \xrightarrow{\text{Sn/HC}l} \quad \text{B} \quad \xrightarrow{\text{CHC}l_3 + \text{alc} \cdot \text{KOH}} \quad \text{C}$$

Complete the following reactions:

$$\text{(i)} \quad \text{C_6H}_5 - \text{COO^-NH}_4^+ \xrightarrow{\quad \Delta \quad} \text{$A \xrightarrow{\quad Br_2/KOH}$} \text{$B \xrightarrow{\quad CH_3COCl/pyridine}$} \text{$C$}$$

$$(ii) \quad C_6 H_5 N_2^{\dagger} B F_4^{-} \xrightarrow{\textstyle NaNO_2/Cu} A \xrightarrow{\textstyle Sn/HCl} B \xrightarrow{\textstyle CHCl_3 + alc. \ KOH} C$$

- 18. निम्न के एकलकों के नाम तथा उनकी संरचनाएँ लिखिए :
 - (i) बूना-N
 - (ii) PVC
 - (iii) निओप्रीन

Write the name of monomers and their structures in the following:

- (i) Buna-N
- (ii) PVC
- (iii) Neoprene

- 19. (i) ग्लूकोस की पायरोनोज़ संरचना आरेखित कीजिए ।
 - (ii) प्रोटीन में किस प्रकार का लिंकेज होता है ?
 - (iii) जल में घुलने वाले और वसा में घुलने वाले विटामिनों के एक-एक उदाहरण दीजिए ।
 - (i) Draw the pyranose structure of glucose.
 - (ii) What type of linkage is present in proteins?
 - (iii) Give one example each for water-soluble vitamins and fat-soluble vitamins.
- 20. (a) कॉम्प्लेक्स $[Fe(CO)_5]$ के लिये संकरण, चुम्बकीय स्वभाव और कॉम्प्लेक्स की स्पिन लिखिए । (परमाणु क्रमांक : Fe = 26)
 - (b) क्रिस्टल फील्ड स्प्लीटिंग ऊर्जा को परिभाषित कीजिए ।
 - (a) For the complex $[Fe(CO)_5]$, write the hybridization, magnetic character and spin of the complex. (At. number : Fe = 26)
 - (b) Define crystal field splitting energy.
- 21. निम्न की भूमिका लिखिए :
 - (i) परिष्करण की वैन आर्केल विधि में आयोडीन की
 - (ii) ऐलुमिनियम के निष्कर्षण में क्राइयोलाइट की
 - (iii) सिल्वर के निष्कर्षण में तन NaCN की

Write the role of

- (i) I₂ in the van Arkel method of refining.
- (ii) Cryolite in the extraction of aluminium.
- (iii) Dilute NaCN in the extraction of silver.
- 22. निम्न अभिक्रियाओं में प्रत्येक के मुख्य उत्पाद लिखिए :

(i)
$$HO$$
 CH_2-OH PCl_5 ?

(ii) CH_3 HBr ?

(iii) CH_3CH_2Cl KNO_2 ?

Write the major product(s) in the following reactions:

(i)
$$HO$$
 CH_2 -OH PCl_5 \uparrow (ii) CH_3 HBr \uparrow ?

(iii) $CH_3CH_2Cl \xrightarrow{KNO_2}$

56/2/1/F 7 [P.T.O.

23. अत्यंत व्यस्तता के कारण मि. अवस्थी ने अपना जीवन बड़ा तनावपूर्ण बना रखा था । उन्होंने तनाव से बचने के लिये नींद की गोलियाँ लेना प्रारम्भ कर दिया जिसके लिये उन्होंने डॉक्टर की भी सलाह नहीं ली । मि. अवस्थी के एक मित्र मि. रॉय ने उन्हें नींद की गोलियाँ न लेने की सलाह दी और साथ ही उन्हें योग, ध्यान लगाने और कसरत करने की सलाह दी । श्री अवस्थी अपने मित्र की सलाह पर जीवन बिताने लगे और थोड़े ही दिनों में वह अच्छा महसूस करने लगे ।

उपरोक्त अनुच्छेद को पढ़कर निम्न के उत्तर दीजिए :

- (i) मि. रॉय द्वारा किन (दो) मूल्यों को दर्शाया गया हैं ?
- (ii) डॉक्टर की सलाह के बिना नींद की गोली क्यों नहीं लेनी चाहिए ?
- (iii) ट्रैंक्विलाइजर क्या हैं ? दो उदाहरण दीजिए ।

Due to hectic and busy schedule, Mr. Awasthi made his life full of tensions and anxiety. He started taking sleeping pills to overcome the depression without consulting the doctor. Mr. Roy, a close friend of Mr. Awasthi, advised him to stop taking sleeping pills and suggested to change his lifestyle by doing Yoga, meditation and some physical exercise. Mr. Awasthi followed his friend's advice and after few days he started feeling better.

After reading the above passage, answer the following:

- (i) What are the values (at least two) displayed by Mr. Roy?
- (ii) Why it is not advisable to take sleeping pills without consulting doctor?
- (iii) What are tanquilizers? Give two examples.
- 24. (a) 298 K पर निम्न अभिक्रिया के लिये ΔG° और $\log K_c$ का परिकलन कीजिए :

$$2Cr(s) + 3Fe^{2+}(aq) \longrightarrow 2Cr^{3+}(aq) + 3Fe(s)$$

दिया गया :
$$E_{cell}^{\circ} = 0.30 \text{ V}$$

(b) A और B के E° मानों का उपयोग करते हुये प्रागुक्ति कीजिए कि आयरन $[E^{\circ} (Fe^{2+}|Fe) = -0.44 \ V]$ की सतह को जंग से बचाने के लिए लेपन करने के लिये कौन ज्यादा उपयोगी है और क्यों ?

दिया गया :
$$E^{\circ}(A^{2+} \mid A) = -2.37 \text{ V} : E^{\circ}(B^{2+} \mid B) = -0.14 \text{ V}$$

अथवा

(a) CH_3COOH के $0.001~mol~L^{-1}$ विलयन की चालकता $3.905 \times 10^{-5}~S~cm^{-1}$ है । इसकी मोलर चालकता और वियोजन की डिग्री (α) का परिकलन कीजिए ।

दिया गया : λ° (H⁺) = 349.6 S cm² mol⁻¹ और λ° (CH₃COO⁻) = 40.9 S cm² mol⁻¹.

(b) लेड स्टोरेज बैटरी किस प्रकार की बैटरी है ? लेड स्टोरेज बैटरी में होने वाली सम्पूर्ण अभिक्रिया को लिखिए ।

(a) Calculate ΔG° and log K_c for the following reaction at 298 K:

$$2Cr(s) + 3Fe^{2+}(aq) \longrightarrow 2Cr^{3+}(aq) + 3Fe(s)$$

Given :
$$E_{cell}^{\circ} = 0.30 \text{ V}$$

(b) Using the E° values of A and B, predict which is better for coating the surface of iron [E° (Fe²⁺ | Fe) = -0.44 V] to prevent corrosion and why?

Given:
$$E^{\circ}(A^{2+} | A) = -2.37 \text{ V}$$
: $E^{\circ}(B^{2+} | B) = -0.14 \text{ V}$

OR

(a) The conductivity of 0.001 mol L^{-1} solution of CH_3COOH is 3.905×10^{-5} S cm⁻¹. Calculate its molar conductivity and degree of dissociation (α).

Given: λ° (H⁺) = 349.6 S cm² mol⁻¹ and λ° (CH₃COO⁻) = 40.9 S cm² mol⁻¹.

- (b) What type of battery is lead storage battery? Write the overall reaction occurring in lead storage battery.
- 25. (a) निम्न को कारण सहित समझाइए:
 - (i) Mn_2O_7 अम्लीय है जबिक MnO क्षारीय है ।
 - (ii) यद्यपि कॉपर में d-आर्बिटल (d^{10}) पूरी तरह भरी हैं फिर भी यह एक संक्रमण धातु माना जाता है ।
 - (iii) ऐक्टिनोयड बड़ी संख्या में उपचयन अवस्थाएँ प्रदर्शित करते हैं ।
 - (b) पाइरोलुसाइट अयस्क (MnO_2) से पोटैशियम परमैंगनेट के निर्माण को लिखिए ।

अथवा

(a) 3d संक्रमण श्रेणी के तत्त्व नीचे दिये जाते हैं :

Sc Ti V Cr Mn Fe Co Ni Cu Zn निम्न उत्तर दीजिए :

- (i) कौन सा तत्त्व उच्चतम द्रवांक वाला है और क्यों ?
- (ii) कौन सा तत्त्व +3 ऑक्सीकरण अवस्था में प्रबल उपचायक है और क्यों ?
- (iii) कौन सा तत्त्व कोमल है और क्यों ?
- (b) सोडियम क्रोमेट (Na₂CrO₄) से पोटैशियम डाइक्रोमेट के निर्माण में शामिल समीकरण को लिखिए ।
- (a) Account for the following:
 - (i) Mn_2O_7 is acidic whereas MnO is basic.
 - (ii) Though copper has completely filled d-orbital (d¹⁰) yet it is considered as a transition metal.
 - (iii) Actinoids show wide range of oxidation states.
- (b) Write the preparation of potassium permanganate from pyrolusite ore (MnO_2) .

OR

56/2/1/F 9 [P.T.O.

(a) The elements of 3d transition series are given as:

Sc Ti V Cr Mn Fe Co Ni Cu Zn

Answer the following:

- (i) Which element has the highest m.p. and why?
- (ii) Which element is a strong oxidizing agent in +3 oxidation state and why?
- (iii) Which element is soft and why?
- (b) Write the equations involved in the preparation of Potassium dichromate from Sodium chromate (Na₂CrO₄).
- 26. (a) निम्न अभिक्रियाओं के प्रत्येक के मुख्य उत्पाद को लिखिए :

(i)
$$CH_3 - C - O - CH_3 + HI \longrightarrow CH_3$$

(ii)
$$CH_3 - CH_2 - CH - CH_3 \xrightarrow{Cu/573 \text{ K}}$$
 OH

(iii)
$$C_6H_5 - OH \xrightarrow{(i)} \frac{CHCl_3 + \overline{\Im}}{(ii)} \xrightarrow{H^+}$$

- (b) निम्न अभिक्रियाओं से संबंधित रासायनिक समीकरणों को लिखिए :
 - (i) कोल्बे अभिक्रिया
 - (ii) एनिसोल का फ्रीडेल-क्राफ्ट्स ऐसीटिलीकरण

अथवा

- (a) क्या होता है जब
 - (i) फीनॉल ब्रोमीन जल के साथ अभिक्रिया करता है ।
 - (ii) CH_3COCI /पिरिडीन के साथ एथनॉल अभिक्रिया करता है ।
 - (iii) HI के साथ ऐनिसोल अभिक्रिया करता है । उपरोक्त अभिक्रियाओं में शामिल रासायनिक समीकरणों को लिखिए ।
- (b) निम्न के बीच अंतर कीजिए:
 - (i) एथनॉल और फीनॉल में
 - (ii) प्रोपेन-2-ऑल और 2-मेथिलप्रोपेन-2-ऑल में

Write the major product(s) in each of the following reactions: (a)

$$(i) \quad \begin{array}{c} CH_3 \\ | \\ CH_3 - C - O - CH_3 + HI \longrightarrow \\ | \\ CH_3 \end{array}$$

(ii)
$$CH_3 - CH_2 - CH - CH_3 \xrightarrow{Cu/573 \text{ K}} OH$$

(iii)
$$C_6H_5 - OH \xrightarrow{(i)} \frac{CHCl_3 + aq \cdot NaOH}{(ii)} \xrightarrow{H^+}$$

- Write the chemical reaction involved in the following reactions: (b)
 - Kolbe's reaction (i)
 - (ii) Friedal-Crafts acetylation of anisole

OR

- (a) What happens when
 - (i) phenol reacts with Bromine water?
 - ethanol reacts with CH₃COCl/pyridine? (ii)
 - (iii) anisole reacts with HI?

Write the chemical equations involved in the above reactions.

- Distinguish between: (b)
 - (i) Ethanol and phenol
 - Propan-2-ol and 2-methylpropan-2-ol (ii)

CHEMISTRY MARKING SCHEME FOREIGN-2016 SET -56/2/1/F

Q.no.	Answers	Marks
1	Like Charged particles cause repulsion/ Brownian motion/ solvation	1
2	Because of some crystallization.	1
3	Reaction (ii)	1
4	NO ₂ gas	1
5	N,N-dimethylbutanamide	1
6	i) [Co(NH ₃) ₄ Cl ₂]Cl	1
	ii) Tetraamminedichloridocobalt(III) chloride	1
7	When reaction is completed 99.9%, $[R]_n = [R]_0 - 0.999[R]_0$	
	$k = \frac{2.303}{t} \log \frac{[R]_0}{[R]}$	1/2
	$= \frac{2.303}{t} \log \frac{[R]_0}{[R]_0 - 0.999[R]_0} = \frac{2.303}{t} \log 10^3$	
	t = 6.909/k	1/2
	For half-life of the reaction	
	$t_{1/2} = 0.693/k$	
	$\frac{t}{t_{1/2}} = \frac{6.909}{k} \times \frac{k}{0.693} = 10$	1
	OR	
7	$R \rightarrow P$ $Rate = \frac{d R}{dt} = k R$ $or \frac{d R}{R} = -kdt$ Integrating this equation, we get $ln [R] = -kt + I \qquad (4.8)$ Again, I is the constant of integration and its value can be determined easily. When $t = 0$, $R = [R]_0$, where $[R]_0$ is the initial concentration of the	1/2
	reactant. Therefore, equation (4.8) can be written as $\ln [R]_0 = -k \times 0 + 1$ $\ln [R]_0 = 1$ Substituting the value of I in equation (4.8) $\ln[R] = -kt + \ln[R]_0$ (4.9) Rearranging this equation $\ln \frac{R}{R_0} = kt$ or $k = \frac{1}{t} \ln \frac{[R]_0}{[R]}$	1/2

	. 2.303 [R]	
	$k = \frac{2.303}{t} \log \frac{[R]_0}{[R]}$	1
8	Henry's law states that the mole fraction of gas in the solution is proportional to the partial pressure of the gas over the solution.	1
	Applications: solubility of CO ₂ gas in soft drinks /solubility of air diluted with helium in blood used by sea divers or any other	1/2
	Solubility of gas in liquid decreases with increase in temperature.	1/2
9	$X = CH_3-CO-CH_2-CH_3$ / Butan-2-one	1
	$Y = CH_3-CH(OH)-CH_2-CH_3 / Butan-2-ol$	1
10	i) ii)	
	HO HO F	1+1
11		
	$k = 2.303 \log p_i$	1
	$\frac{1}{t} = \frac{2.365}{2p_i - p_t}$	
	$= \frac{2.303 \log_{100} \log_{100} \frac{0.3}{2 \times 0.3 - 0.5}$	1
	$= \frac{2.303}{300} \log 3$	
	$= \frac{2.303 \times 0.4771}{300}$	
	$= 0.0036 \text{ atm}^{-1} \text{ or } 0.004 \text{ atm}^{-1} \text{ (approx.)}$	1

12	i)Because of the resonance stabilization of the conjugate base i.e enolate anion or diagrammatic representation.	11/2
	iii)Because the carboxyl group gets bonded to the catalyst anhyd.AlCl ₃ (lewis acid). (note: part ii is deleted because of printing error and mark alloted in part i and part iii)	1½
	OR	
12	i)C ₆ H ₅ CH ₃ CrO ₃ /(CH ₃ CO) ₂ O C ₆ H ₅ CH(OCOCH ₃) ₂ H ₂ O C ₆ H ₅ CHO	
	ii)CH ₃ COOH <u>Cl₂/P</u> Cl-CH ₂ -COOH	
	iii)CH ₃ COCH ₃ Zn(Hg)/conc.HCl CH ₃ CH ₂ CH ₃	1x3=3
	(Or by any other correct method)	
13	$\mathbf{d} = \frac{\mathbf{z} \times \mathbf{M}}{\mathbf{N}_{\mathbf{A}} \times \mathbf{a}^3}$	
	Or	
	$d = \underbrace{z \times w}_{N \times a^3}$ Where w is weight and N is no. of atoms.	1
	$d = \frac{4 \times 200 \text{ g}}{2.5 \times 10^{24} \times (400 \times 10^{-10} \text{cm})^3}$	1
	$d = 5 g cm^{-3}$	1
	(or by any other correct method)	
14	i) It is a process in which both adsorption and absorption can take place simultaneously.	
		1
	ii) It is the potential difference between the fixed layer and the diffused/ double layer of opposite charges around the colloidal particles.	1
	iii) It is the temperature above which the formation of micelles takes place.	1

		1
15		
	$\Delta T_f = i K_f m$	1/2
	For complete ionisation of Na ₂ SO ₄ i=3	1/2
	$\Delta T_{\rm f} = T_{\rm f}^{\ 0} - T_{\rm f} = 3 \ \ x \ 1.86 \ \ \text{K kg mol}^{\ -1} \ \ x \ \frac{2g}{142 g \ \text{mol}^{\ -1}} \ \ x \ \frac{1000 \ g \ kg^{\ -1}}{50 \ g}$	1
	$\Delta T_{\mathrm{f}} = 1.57$	
	So, $T_f = -1.57^{\circ}C$ or 271.43K	1
16	i)Because of higher oxidation state (+5) / high charge to size ratio / high polarizing power.	
	ii)Because of high interelectronic repulsion. iii)Because of its low bond dissociation enthalpy and high hydration enthalpy of F ⁻ .	1x3=3
17	i)A: C ₆ H ₅ CONH ₂ B: C ₆ H ₅ NH ₂ C: C ₆ H ₅ NHCOCH ₃	1½
	ii)A: C ₆ H ₅ NO ₂ B: C ₆ H ₅ NH ₂ C: C ₆ H ₅ -NC	1½
18		
	(i) Butadiene and acrylonitrile $CH_2 = CH - CH = CH_2$ and CH_2 = CH - CN	1/2+1/2
	(ii) Vinyl chloride CH ₂ =CH-Cl	1/2+1/2
	(iii) Chloroprene	
	Cl	1/2+1/2
	$\mathbf{CH_2} = \mathbf{C} - \mathbf{CH} = \mathbf{CH_2}$	
19	6 CH ₂ OH 5 OH H OH H	1
	i) H OH	
	ii) Peptide linkage / -CO-NH- linkage	1
	Water soluble-Vitamin B / C Fat soluble- Vitamin A /D /E /K	1/2+1/2

i) dsp ³ , Diamagnetic, low spin	1 1/2+1/2
ii) The energy used to split degenerate d-orbitals due to the presence of ligands in a definite geometry is called crystal field splitting energy.	1
i)Iodine is heated with Zr or Ti to form a volatile compound which on further heating decompose to give pure Zr or Ti . or	1
$Zr(impure) + 2I_2 \longrightarrow ZrI_4$ (volatile)	
ZrI_4 1800K $Zr(pure) + 2I_2$	
ii)Cryolite lowers the m.p.of alumina mix / acts as a solvent / brings conductivity.	1
(iii) Role of NaCN in the extraction of Ag is to do the leaching of silver ore in the presence of air.	
or $4Ag(s) + 8CN^{-}(aq) + 2H_2O + O_2(g)$ \longrightarrow $4[Ag(CN)_2]^{-} + 4OH^{-}$	1
i) CH ₂ Cl	
ii) Br CH ₃	1 x 3=3
iii) CH ₃ CH ₂ ONO	

23	(i)Caring ,dutiful, Concerned, compassionate (or any other two values)	1/2+1/2
	ii)Because higher doses may have harmful effects and act as poison which cause even death.	1
	iii)Tranquilizers are a class of chemical compounds used for treatment of stress or even mental diseases.	1
	ex. chlordiazepoxide, equanil, veronal, serotonin, valium (or any other two examples)	1/2+1/2
24	a)	
	Given $E^{o}_{Cell} = +0.30V$; $F = 96500C \text{ mol}^{-1}$	
	n = 6 (from the given reaction)	
	$\Delta_{\rm r}G^{\rm O} = - n \times F \times E^{\rm o}_{\rm Cell}$	1/2
	$\Delta_r G^O = -6 \times 96500 \text{ C mol}^{-1} \times 0.30 \text{V}$	
	= - 173,700 J / mol or - 173.7 kJ / mol	1
	$\log Kc = \underline{n E^{o}_{Cell}}$	
	0.059	1/2
	$\log \text{ Kc} = \frac{6 \times 0.30}{0.059}$	
	log Kc = 30.5	1
	b)A Because E° value of A shows that on coating ,A acts as anode and Fe acts as a cathode	1
	and hence A oxidises in prefence to Fe and prevent corrosion / or E^{o}_{cell} is positive and hence A oxidises itself to prevent corrosion of Fe/E^{o} value is more negative. (or any other correct reason)	1
	OR	

24 a) $A_{m} = \frac{\kappa}{c}$ $= \underbrace{3.905 \times 10^{-5} \text{ S cm}^{-1}}_{0.001 \text{ mol } L^{-1}} \times \underbrace{1000 \text{ cm}^{3}}_{L}$	1/2
$ \Lambda_{\rm m} = 39.05 {\rm Scm}^2 {\rm mol}^{-1} $ $ \Lambda_{\rm o} = \lambda^{\rm o}({\rm H}^+) + \lambda^{\rm o}({\rm CH}_3 {\rm COO}^-) $ $ = (349.6 + 40.9) {\rm Scm}^2 {\rm mol}^{-1} $	1
$\Lambda_{0} = 390.5 \text{ Scm}^{2} \text{mol}^{-1}$ $\alpha = \frac{\Lambda_{m}}{\Lambda_{0}}$ $= \frac{39.05 \text{ Scm}^{2} \text{mol}^{-1}}{390.5 \text{ Scm}^{2} \text{mol}^{-1}}$	1/2
$\alpha = 0.1$	1
b)Secondary battery or rechargeable battery	1
$Pb(s) + PbO_2(s) + 2SO_4^{2-}(aq) + 4H^+(aq)$ \longrightarrow $2PbSO_4(s) + 2H_2O(l)$	1
a) i)Because of higher oxidation state (+7) of Mn. ii)Because it has one unpaired electron in 3d orbital in its +2 oxidation state / or it has incompletely filled d-orbital in +2 oxidation state. iii)Because of comparable energies of 5f, 6d and 7s orbitals. b) 2MnO₂ + 4KOH + O₂ → 2K₂MnO₄ + 2H₂O	1 1 1
$3MnO_4^{2^-} + 4 H^+ \longrightarrow 2MnO_4^- + MnO_2 + 2H_2O$ OR	1+1
OK .	

25	. \	1			
25	a)i)Cr, because of maximum no. of unpaired electrons cause strong metallic bonding.	1/2 + 1/2			
	ii)Mn, because it attains stable half -filled 3d ⁵ configuration in +2 oxidation state.				
	iii)Zn, because of no unpaired electron in d-orbital. b)				
	$2\mathrm{Na_2CrO_4} + 2~\mathrm{H^{\scriptscriptstyle +}} \rightarrow \mathrm{Na_2Cr_2O_7} + 2~\mathrm{Na^{\scriptscriptstyle +}} + \mathrm{H_2O}$				
	$Na_2Cr_2O_7 + 2 KCl \longrightarrow K_2Cr_2O_7 + 2 NaCl$	1+1			
26	a)				
	i) $(CH_3)_3 C-I + CH_3-OH$	1			
	i) CH ₃ -CH ₂ -C-CH ₃	1			
	O O				
	ii) OH				
	СНО	1			
	b) .i)				
	OH ONA OH NaOH (i) CO ₂ (ii) H' COOH	1			
	ii). OCH ₃ + CH ₃ COCl Anhyd. AlCl ₃ OCH ₃ COCH ₃	1			
	OR COCH ₃				

8

26	a). (i)					
	он он	1				
	$\begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$					
	(ii) CH ₃ CH ₂ OH + CH ₃ COC l → CH ₃ CH ₂ O-COCH ₃ + HCl (iii).	1				
	OCH ₃ OH					
	HI + CH ₃ -I	1				
	(b)(i) Warm each compound with iodine and sodium hydroxide.					
	Phenol: No yellow ppt formed Ethanol: Yellow ppt of Iodoform are formed. ii)On adding lucas reagent (HCl/anhyd.ZnCl ₂), Propan-2-ol gives white turbidity after 5 minutes whereas 2-methylpropan-2-ol gives white turbidity immediately.					
	(or any other suitable test)					

Name	Signature	Name	Signature
Dr. (Mrs.) Sangeeta Bhatia		Sh. S.K. Munjal	
Dr. K.N. Uppadhya		Sh. D.A. Mishra	
Prof. R.D. Shukla		Sh. Rakesh Dhawan	
Dr. (Mrs.) Sunita Ramrakhiani		Ms. Nirmala Venkateswaran	
Sh. S. Vallabhan, Principal		Mrs. Deepika Arora	
Mr. K.M. Abdul Raheem		Ms. Minakshi Gupta	
Mrs. Sushma Sachdeva		Sh. Mukesh Kaushik	
Ms. Seema Bhatnagar		Mr. Roop Narayan	
Sh. Pawan Singh Meena		Ms. Garima Bhutani	
Sh. Praveen Kumar Agrawal			